Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Signal ; 119: 111172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604342

RESUMEN

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Simvastatina , Simvastatina/farmacología , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Células HeLa , Proteínas de Unión al GTP Monoméricas/metabolismo , Mitosis/efectos de los fármacos , División Celular/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
3.
Eur J Pharmacol ; 963: 176229, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38072041

RESUMEN

Anti-mitotic drugs are clinically used as anti-cancer treatments. Polo-like kinase 1 (PLK1) is a promising target against cancer cell division due to its importance in the whole process of mitosis, and thus PLK1-targeting agents have been developed in the last few decades. Clinical trial studies show that several PLK1 inhibitors are generally well-tolerated. However, the response rates are limited; therefore, it is needed to improve the efficacy of those drugs. Here, we show that NVP-BHG712, an erythropoietin-producing human hepatocellular (Eph) signaling inhibitor, potentiates the growth-inhibitory effects of the PLK1 inhibitors BI2536 and BI6727 in cancer cells. This combination treatment strongly suppresses cancer spheroid formation. Moreover, the combination drastically arrests cells at mitosis by continuous activation of the spindle assembly checkpoint (SAC), thereby inducing apoptosis. SAC activation caused by the combination of NVP-BHG712 and BI2536 is due to the inhibition of centrosome maturation and separation. Although the inactivation level of the PLK1 kinase is comparable between BI2536 treatment alone and combination treatment, the combination treatment strongly inactivates MAPK signaling in mitosis. Since inhibition of MAPK signaling potentiates the efficacy of BI2536 treatment, inactivation of PLK1 kinase and MAPK signaling contributes to the strong inhibition of centrosome separation. These results suggest that Eph signal inhibition potentiates the effect of PLK1 inhibition, leading to strong mitotic arrest via SAC activation and the subsequent reduction of cancer cell survival. The combination of PLK1 inhibition and Eph signal inhibition will provide a new effective strategy for targeting cancer cell division.


Asunto(s)
Eritropoyetina , Neoplasias , Humanos , Ciclo Celular , Proteínas de Ciclo Celular , Línea Celular Tumoral , Eritropoyetina/antagonistas & inhibidores , Mitosis , Neoplasias/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas , Quinasas Tipo Polo/antagonistas & inhibidores
4.
Cell Signal ; 109: 110764, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315749

RESUMEN

c-Src tyrosine kinase plays roles in a wide range of signaling events and its increased activity is frequently observed in a variety of epithelial and non-epithelial cancers. v-Src, an oncogene first identified in the Rous sarcoma virus, is an oncogenic version of c-Src and has constitutively active tyrosine kinase activity. We previously showed that v-Src induces Aurora B delocalization, resulting in cytokinesis failure and binucleated cell formation. In the present study, we explored the mechanism underlying v-Src-induced Aurora B delocalization. Treatment with the Eg5 inhibitor (+)-S-trityl-L-cysteine (STLC) arrested cells in a prometaphase-like state with a monopolar spindle; upon further inhibition of cyclin-dependent kinase (CDK1) by RO-3306, cells underwent monopolar cytokinesis with bleb-like protrusions. Aurora B was localized to the protruding furrow region or the polarized plasma membrane 30 min after RO-3306 addition, whereas inducible v-Src expression caused Aurora B delocalization in cells undergoing monopolar cytokinesis. Delocalization was similarly observed in monopolar cytokinesis induced by inhibiting Mps1, instead of CDK1, in the STLC-arrested mitotic cells. Importantly, western blotting analysis and in vitro kinase assay revealed that v-Src decreased the levels of Aurora B autophosphorylation and its kinase activity. Furthermore, like v-Src, treatment with the Aurora B inhibitor ZM447439 also caused Aurora B delocalization at concentrations that partially inhibited Aurora B autophosphorylation. Given that phosphorylation of Aurora B by v-Src was not observed, these results suggest that v-Src causes Aurora B delocalization by indirectly suppressing Aurora B kinase activity.


Asunto(s)
Citocinesis , Quinolinas , Humanos , Aurora Quinasa B/metabolismo , Fosforilación , Oncogenes , Mitosis , Células HeLa
5.
Exp Cell Res ; 429(2): 113672, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37339729

RESUMEN

Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (SAC). However, it is unclear whether SAC activation is maintained at higher temperatures than 42 °C. Here, we demonstrated that a high temperature of 44 °C just before mitotic entry led to a prolonged mitotic delay in the early phase, which was shortened by the SAC inhibitor, AZ3146, indicating SAC activation. Interestingly, mitotic slippage was observed at 44 °C after a prolonged delay but not at 42 °C heat shock. Furthermore, the multinuclear cells were generated by mitotic slippage in 44 °C-treated cells. Immunofluorescence analysis revealed that heat shock at 44 °C reduces the kinetochore localization of MAD2, which is essential for mitotic checkpoint activation, in nocodazole-arrested mitotic cells. These results indicate that 44 °C heat shock causes SAC inactivation even after full activation of SAC and suggest that decreased localization of MAD2 at the kinetochore is involved in heat shock-induced mitotic slippage, resulting in multinucleation. Since mitotic slippage causes drug resistance and chromosomal instability, we propose that there may be a risk of cancer malignancy when the cells are exposed to high temperatures.


Asunto(s)
Proteínas de Ciclo Celular , Puntos de Control de la Fase M del Ciclo Celular , Humanos , Proteínas de Ciclo Celular/genética , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Temperatura , Huso Acromático/metabolismo , Respuesta al Choque Térmico , Mitosis
6.
Sci Rep ; 13(1): 2067, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739326

RESUMEN

Mitotic progression requires the precise formation of spindle microtubules based on mature centrosomes. During the G2/M transition, centrosome maturation progresses, and associated microtubules bundle to form mitotic spindle fibers and capture the chromosomes for alignment at the cell equator. Mitotic kinases-induced phosphorylation signaling is necessary for these processes. Here, we identified SH2 domain-containing protein 4A (SH2D4A/PPP1R38) as a new mitotic regulator. SH2D4A knockdown delays mitotic progression. The time-lapse imaging analysis showed that SH2D4A specifically contributes to the alignment of chromosomes. The cold treatment assay and microtubule regrowth assay indicated that SH2D4A promotes microtubule nucleation to support kinetochore-microtubule attachment. This may be due to the centrosome maturation by SH2D4A via centrosomal recruitment of pericentriolar material (PCM) such as cep192, γ-tubulin, and PLK1. SH2D4A was found to be a negative regulator of PP1 phosphatase. Consistently, treatment with a PP1 inhibitor rescues SH2D4A-knockdown-induced phenotypes, including the microtubule nucleation and centrosomal recruitment of active PLK1. These results suggest that SH2D4A is involved in PCM recruitment to centrosomes and centrosome maturation through attenuation of PP1 phosphatases, accelerating the spindle formation and supporting mitotic progression.


Asunto(s)
Centrosoma , Mitosis , Humanos , Centrosoma/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
7.
Yakugaku Zasshi ; 141(11): 1229-1234, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-34719542

RESUMEN

Epithelial-mesenchymal transition (EMT) is an important program in epithelial cancer cells to acquire the motility and invasion, which promotes cancer metastasis to remote organs. EMT is induced by various secreted factors, such as transforming growth factor-ß (TGF-ß) and epidermal growth factor (EGF). TGF-ß ligand activates Smad-dependent and -independent pathways by binding to TGF-ß receptors. In Smad-dependent pathway, the activated TGF-ß receptor phosphorylates Smad2/3 and accelerates its association with Smad4, leading to their nuclear translocation. Smad2/3-4 complex promotes the expression of EMT-inducing transcription factors, such as Snail and Slug. In Smad-independent pathway, mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways are activated and required for TGF-ß-induced EMT. Smad-independent pathway is similar to downstream of receptor tyrosine kinases, and therefore EGFR signaling is known to induce EMT synergize with TGF-ß signaling. We explored a new mechanism of EGFR-mediated activation of TGF-ß signaling and found that c-Abl kinase activates TGF-ß signaling. Based on our proteomic analysis, we identified several TGF-ß signaling molecules as nuclear c-Abl substrates, including transcriptional intermediary factor 1-γ (TIF1γ/TRIM33/Ectodermin), a suppressor of TGF-ß signaling. c-Abl-mediated phosphorylation of TIF1γ inhibits its binding to Smad3, thereby increasing Smad3's transcriptional activity and promoting EMT. TIF1γ phosphorylation is also involved in the EGFR-caused aberrant activation of TGF-ß signaling, suggesting that EGFR/c-Abl pathway activates TGF-ß signaling through phosphorylation of nuclear substrates and promotes EMT. Our findings provide new insights into the activation machinery of TGF-ß signaling, and further studies are required to clarify the clinical significance of the EGFR/c-Abl pathway in cancer metastasis.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/patología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Movimiento Celular/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Invasividad Neoplásica/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Smad/metabolismo , Factores de Transcripción/metabolismo , Tirosina/metabolismo
8.
J Cell Biochem ; 122(12): 1958-1967, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34617313

RESUMEN

The mammalian HSP105/110 family consists of four members, including Hsp105 and Apg-1, which function as molecular chaperones. Recently, we reported that Hsp105 knockdown increases sensitivity to the DNA-damaging agent Adriamycin but decreases sensitivity to the microtubule-targeting agent paclitaxel. However, whether the other Hsp105/110 family proteins have the same functional property is unknown. Here, we show that Apg-1 has different roles from Hsp105 in cell proliferation, cell division, and drug sensitivity. We generated the Apg-1-knockdown HeLa S3 cells by lentiviral expression of Apg-1-targeting short hairpin RNA. Knockdown of Apg-1 but not Hsp105 decreased cell proliferation. Apg-1 knockdown increased cell death upon Adriamycin treatment without affecting paclitaxel sensitivity. The cell synchronization experiment suggests that Apg-1 functions in mitotic progression at a different mitotic subphase from Hsp105, which cause difference in paclitaxel sensitivity. Since Apg-1 is overexpressed in certain types of tumors, Apg-1 may become a potential therapeutic target for cancer treatment without causing resistance to the microtubule-targeting agents.


Asunto(s)
División Celular , Resistencia a Antineoplásicos , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas del Choque Térmico HSP110/genética , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética
9.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071893

RESUMEN

Insulin-like growth factor 1 receptor (IGF1R), a receptor-type tyrosine kinase, transduces signals related to cell proliferation, survival, and differentiation. We recently reported that OSI-906, an IGF1R inhibitor, in combination with the Aurora B inhibitor ZM447439 suppresses cell proliferation. However, the mechanism underlying this suppressive effect is yet to be elucidated. In this study, we examined the effects of combination treatment with OSI-906 and ZM447439 on cell division, so as to understand how cell proliferation was suppressed. Morphological analysis showed that the combination treatment generated enlarged cells with aberrant nuclei, whereas neither OSI-906 nor ZM447439 treatment alone caused this morphological change. Flow cytometry analysis indicated that over-replicated cells were generated by the combination treatment, but not by the lone treatment with either inhibitors. Time-lapse imaging showed mitotic slippage following a severe delay in chromosome alignment and cytokinesis failure with furrow regression. Furthermore, in S-trityl-l-cysteine-treated cells, cyclin B1 was precociously degraded. These results suggest that the combination treatment caused severe defect in the chromosome alignment and spindle assembly checkpoint, which resulted in the generation of over-replicated cells. The generation of over-replicated cells with massive aneuploidy may be the cause of reduction of cell viability and cell death. This study provides new possibilities of cancer chemotherapy.


Asunto(s)
Aurora Quinasa B/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Ciclina B1/metabolismo , Imidazoles/farmacología , Mitosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/farmacología , Benzamidas/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteolisis , Quinazolinas/farmacología , Receptor IGF Tipo 1/metabolismo
10.
J Cell Mol Med ; 25(3): 1677-1687, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33465289

RESUMEN

v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.


Asunto(s)
Antineoplásicos/farmacología , División Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína Oncogénica pp60(v-src)/metabolismo , Biomarcadores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Citometría de Flujo , Humanos , Inmunofenotipificación , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Mitosis/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Moduladores de Tubulina/farmacología , Quinasa Tipo Polo 1
11.
FASEB J ; 35(1): e21242, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368671

RESUMEN

When cells with excess DNA, such as tetraploid cells, undergo cell division, it can contribute to cellular transformation via asymmetrical chromosome segregation-generated genetic diversity. Cell cycle progression of tetraploid cells is suppressed by large tumor suppressor 2 (LATS2) kinase-induced inhibitory phosphorylation of the transcriptional coactivator Yes-associated protein (YAP). We recently reported that the oncogene v-Src induces tetraploidy and promotes cell cycle progression of tetraploid cells by suppressing LATS2 activity. We explore here the mechanism by which v-Src suppresses LATS2 activity and the role of LATS2 in v-Src-expressing cells. LATS2 was directly phosphorylated by v-Src and the proto-oncogene c-Src, resulting in decreased LATS2 kinase activity. This kinase-deficient LATS2 accumulated in a YAP transcriptional activity-dependent manner, and knockdown of either LATS2 or the LATS2-binding partner moesin-ezrin-radixin-like protein (Merlin) accelerated v-Src-induced membrane bleb formation. Upon v-Src expression, the interaction of Merlin with LATS2 was increased possibly due to a decrease in Merlin phosphorylation at Ser518, the dephosphorylation of which is required for the open conformation of Merlin and interaction with LATS2. LATS2 was colocalized with Merlin at the plasma membrane in a manner that depends on the Merlin-binding region of LATS2. The bleb formation in v-Src-expressing and LATS2-knockdown cells was rescued by the reexpression of wild-type or kinase-dead LATS2 but not the LATS2 mutant lacking the Merlin-binding region. These results suggest that the kinase-deficient LATS2 plays a role with Merlin at the plasma membrane in the maintenance of cortical rigidity in v-Src-expressing cells, which may cause tumor suppression.


Asunto(s)
Estructuras de la Membrana Celular/enzimología , Proteína Oncogénica pp60(v-src)/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Estructuras de la Membrana Celular/genética , Células HCT116 , Células HT29 , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteína Oncogénica pp60(v-src)/genética , Proteínas Serina-Treonina Quinasas/genética , Proto-Oncogenes Mas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Señalizadoras YAP
12.
Exp Cell Res ; 395(2): 112207, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32750331

RESUMEN

Cell division is a tightly regulated, essential process for cell proliferation. Very recently, we reported that EphA2 is phosphorylated at Ser897, via the Cdk1/MEK/ERK/RSK pathway, during M phase and contributes to proper M-phase progression by maintaining cortical rigidity via the EphA2pSer897/ephexin4/RhoG pathway. Here, we show that EphA2 kinase activity is dispensable for M-phase progression. Although EphA2 knockdown delayed this progression, the delay was rescued by an EphA2 mutant expression with an Asp739 to Asn substitution, as well as by wild-type EphA2. Western blotting analysis confirmed that the Asp739Asn mutant lost its EphA2 kinase activity. Like wild-type EphA2, the Asp739Asn mutant was localized to the plasma membrane irrespective of cell cycle. While RhoG localization to the plasma membrane was decreased in EphA2 knockdown cells, it was rescued by re-expression of wild-type EphA2 but not via the mutant containing the Ser897 to Ala substitution. This confirmed our recent report that phosphorylation at Ser897 is responsible for RhoG localization to the plasma membrane. In agreement with the M-phase progression's rescue effect, the Asp739Asn mutant rescued RhoG localization in EphA2 knockdown cells. These results suggest that EphA2 regulates M-phase progression in a manner independent of its kinase activity.


Asunto(s)
Ciclo Celular/fisiología , División Celular/fisiología , Proliferación Celular/fisiología , Efrina-A2/metabolismo , Proteína Quinasa CDC2/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Fosfoserina/metabolismo , Receptor EphA2 , Transducción de Señal/fisiología
13.
Proc Natl Acad Sci U S A ; 117(25): 14365-14375, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513690

RESUMEN

Proper resolution of inflammation is vital for repair and restoration of homeostasis after tissue damage, and its dysregulation underlies various noncommunicable diseases, such as cardiovascular and metabolic diseases. Macrophages play diverse roles throughout initial inflammation, its resolution, and tissue repair. Differential metabolic reprogramming is reportedly required for induction and support of the various macrophage activation states. Here we show that a long noncoding RNA (lncRNA), lncFAO, contributes to inflammation resolution and tissue repair in mice by promoting fatty acid oxidation (FAO) in macrophages. lncFAO is induced late after lipopolysaccharide (LPS) stimulation of cultured macrophages and in Ly6Chi monocyte-derived macrophages in damaged tissue during the resolution and reparative phases. We found that lncFAO directly interacts with the HADHB subunit of mitochondrial trifunctional protein and activates FAO. lncFAO deletion impairs resolution of inflammation related to endotoxic shock and delays resolution of inflammation and tissue repair in a skin wound. These results demonstrate that by tuning mitochondrial metabolism, lncFAO acts as a node of immunometabolic control in macrophages during the resolution and repair phases of inflammation.


Asunto(s)
Ácidos Grasos/metabolismo , Inflamación/inmunología , Macrófagos/inmunología , Subunidad beta de la Proteína Trifuncional Mitocondrial/genética , ARN Largo no Codificante/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Lipopolisacáridos/inmunología , Activación de Macrófagos/genética , Macrófagos/metabolismo , Masculino , Ratones , Subunidad beta de la Proteína Trifuncional Mitocondrial/metabolismo , Oxidación-Reducción , Cultivo Primario de Células , ARN Largo no Codificante/genética , Piel/inmunología , Piel/lesiones , Cicatrización de Heridas/inmunología
14.
Cancers (Basel) ; 12(4)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344689

RESUMEN

Anaplastic lymphoma kinase (ALK), a receptor-type tyrosine kinase, is involved in the pathogenesis of several cancers. ALK has been targeted with small molecule inhibitors for the treatment of different cancers, but absolute success remains elusive. In the present study, the effects of ALK inhibitors on M phase progression were evaluated. Crizotinib, ceritinib, and TAE684 suppressed proliferation of neuroblastoma SH-SY5Y cells in a concentration-dependent manner. At approximate IC50 concentrations, these inhibitors caused misorientation of spindles, misalignment of chromosomes and reduction in autophosphorylation. Similarly, knockdown of ALK caused M phase delay, which was rescued by re-expression of ALK. Time-lapse imaging revealed that anaphase onset was delayed. The monopolar spindle 1 (MPS1) inhibitor, AZ3146, and MAD2 knockdown led to a release from inhibitor-induced M phase delay, suggesting that spindle assembly checkpoint may be activated in ALK-inhibited cells. H2228 human lung carcinoma cells that express EML4-ALK fusion showed M phase delay in the presence of TAE684 at about IC50 concentrations. These results suggest that ALK plays a role in M phase regulation and ALK inhibition may contribute to the suppression of cell proliferation in ALK-expressing cancer cells.

15.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033461

RESUMEN

The insulin-like growth factor 1 receptor (IGF1R) is a receptor-type tyrosine kinase that transduces signals related to cell proliferation, differentiation, and survival. IGF1R expression is often misregulated in tumor cells, but the relevance of this for cancer progression remains unclear. Here, we examined the impact of IGF1R inhibition on cell division. We found that siRNA-mediated knockdown of IGF1R from HeLa S3 cells leads to M-phase delays. Although IGF1R depletion causes partial exclusion of FoxM1 from the nucleus, quantitative real-time PCR revealed that the transcription of M-phase regulators is not affected by decreased levels of IGF1R. Moreover, a similar delay in M phase was observed following 2 h of incubation with the IGF1R inhibitors OSI-906 and NVP-ADW742. These results suggest that the M-phase delay observed in IGF1R-compromised cells is not caused by altered expression of mitotic regulators. Live-cell imaging revealed that both prolonged prometaphase and prolonged metaphase underlie the delay and this can be abrogated by the inhibition of Mps1 with AZ3146, suggesting activation of the Spindle Assembly Checkpoint when IGF1R is inhibited. Furthermore, incubation with the Aurora B inhibitor ZM447439 potentiated the IGF1R inhibitor-induced suppression of cell proliferation, opening up new possibilities for more effective cancer chemotherapy.


Asunto(s)
Aurora Quinasa B/genética , División Celular/genética , Proliferación Celular/genética , Receptor IGF Tipo 1/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Benzamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , División Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células HeLa , Humanos , Imidazoles/farmacología , Pirazinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Quinazolinas/farmacología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
16.
Oncogene ; 38(5): 637-655, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30177833

RESUMEN

Protein-tyrosine kinases regulate a broad range of intracellular processes occurring primarily just beneath the plasma membrane. With the greatest care to prevent dephosphorylation, we have shown that nuclear tyrosine phosphorylation regulates global chromatin structural states. However, the roles for tyrosine phosphorylation in the nucleus are poorly understood. Here we identify transcriptional intermediary factor 1-γ (TIF1γ/TRIM33/Ectodermin), which suppresses transforming growth factor-ß (TGF-ß) signaling through the association with Smad2/3 transcription factor, as a new nuclear substrate of c-Abl tyrosine kinase. Replacement of the three tyrosine residues Tyr-524, -610, and -1048 with phenylalanine (3YF) inhibits c-Abl-mediated phosphorylation of TIF1γ and enhances TIF1γ's association with Smad3. Importantly, knockdown-rescue experiments show that 3YF strengthens TIF1γ's ability to suppress TGF-ß signaling. Intriguingly, activation of c-Abl by epidermal growth factor (EGF) induces desuppression of TGF-ß signaling via enhancing the tyrosine phosphorylation level of TIF1γ. TGF-ß together with EGF synergistically provokes desuppressive responses of epithelial-to-mesenchymal transition through tyrosine phosphorylation of TIF1γ. These results suggest that nuclear c-Abl-mediated tyrosine phosphorylation of TIF1γ has a desuppressive role in TGF-ß-Smad2/3 signaling.


Asunto(s)
Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células A549 , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Células MCF-7 , Fosforilación , Proteínas Proto-Oncogénicas c-abl/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética
17.
Biol Pharm Bull ; 41(3): 445-449, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29491222

RESUMEN

Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) mRNA is a variant isoform of the liver-type OATP1B3. Because Ct-OATP1B3 mRNA shows an excellent cancer-specific expression profile in colorectal cancer (CRC), and that its expression levels are associated with CRC prognosis, it holds the potential to become a useful CRC detection and diagnosis biomarker. While the potential is currently justified only at the tissue level, if existence of Ct-OATP1B3 mRNA in CRC-derived extracellular vesicles (EVs) is validated, the findings could enhance its translational potential as a CRC detection and diagnosis biomarker. Therefore, this study aims at proving that Ct-OATP1B3 mRNA exists in CRC-derived EVs, and can be detected using serum specimens. To examine the possibility of Ct-OATP1B3 mRNA being existed in extracellular milieu, we isolated EVs from the human CRC (HCT116, HT-29, and SW480) cell lines, and prepared their cDNAs. The RT-PCR results showed that Ct-OATP1B3 mRNA was clearly present in EVs derived from the human CRC cell lines. Then, in order to further explore the possibility that Ct-OATP1B3 mRNA in CRC-derived EVs can be detected in serum, we isolated serum EVs derived from human CRC xenograft mice, and then performed RT-PCR. The results showed that Ct-OATP1B3 mRNA could be found in all serum EV and CRC tissue samples of the mice examined. Collectively, our findings, which show that Ct-OATP1B3 mRNA exists in EVs and can be detected in (at least) mouse serum, strengthen the potential use of Ct-OATP1B3 mRNA as a serum-based CRC biomarker.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/sangre , Vesículas Extracelulares/metabolismo , ARN Mensajero/sangre , ARN Mensajero/genética , ARN Neoplásico/sangre , ARN Neoplásico/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/biosíntesis
18.
Biol Pharm Bull ; 40(11): 1968-1975, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29093346

RESUMEN

Anaplastic lymphoma kinase (ALK) is a receptor-type tyrosine kinase that promotes cell growth upon stimulation with ligands such as midkine and pleiotrophin. Recently, a truncated isoform of ALK was identified in a variety of tumors. This isoform is expressed from a novel ALK transcript initiated from a de novo alternative transcription initiation (ATI) site in ALK intron 19 (referred to as ALKATI). ALKATI, which consists of only the intracellular kinase domain, localizes to the nucleus as well as the cytoplasm. However, its nuclear role is unknown. In this study, we determined that ALKATI promoted chromatin structural changes in the nucleus in a kinase activity-dependent manner. We found that expression of ALKATI increased the level of the heterochromatin marker Lys9 tri-methylated histone H3. In addition, we demonstrated that ALKATI phosphorylated the nuclear protein A-kinase anchoring protein 8 (AKAP8) and altered its subcellular localization from the insoluble fraction to the soluble fraction. These results suggest that ALKATI induces chromatin structural changes and heterochromatinization through phosphorylation of AKAP8 in the nucleus.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Núcleo Celular/metabolismo , Heterocromatina/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Empalme Alternativo , Quinasa de Linfoma Anaplásico , Núcleo Celular/genética , Células HeLa , Heterocromatina/genética , Histonas/metabolismo , Humanos , Intrones/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilación , Dominios Proteicos/genética , Proteínas Tirosina Quinasas Receptoras/genética , Sitio de Iniciación de la Transcripción
19.
Biochem Biophys Res Commun ; 490(3): 1045-1051, 2017 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-28666867

RESUMEN

c-Abl is a non-receptor-type tyrosine kinase that plays an important role in cell proliferation, migration, apoptosis, and fibrosis. Furthermore, although c-Abl is involved in transforming growth factor-ß (TGF-ß) signaling, its molecular functions in TGF-ß signaling are not fully understood. Here, we found that c-Abl phosphorylates SKI-interacting protein (SKIP), a nuclear cofactor of the transcription factor Smad3. The c-Abl inhibitor imatinib suppressed TGF-ß-induced expression of Smad3 targets as well as SKIP/Smad3 interaction. TGF-ß-stimulation induced tyrosine phosphorylation of SKIP, and this phosphorylation was suppressed by imatinib. Tyr292, Tyr430, and Tyr433 residues in SKIP were shown to be involved in c-Abl-mediated phosphorylation. Phosphomimetic glutamic acid substitution at Tyr292 in SKIP enhanced, whereas its phospho-dead phenylalanine substitution attenuated TGF-ß-induced SKIP/Smad3 interaction. Moreover, the phosphomimetic mutant of SKIP augmented transcriptional activity of Smad3. Taken together, these results suggest that c-Abl phosphorylates SKIP mainly at Tyr292 and promotes SKIP/Smad3 interaction for the full activation of TGF-ß/Smad3 signaling.


Asunto(s)
Coactivadores de Receptor Nuclear/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Tirosina/metabolismo , Células A549 , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Fosforilación , Mapas de Interacción de Proteínas
20.
J Biol Chem ; 292(5): 1648-1665, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27998981

RESUMEN

Src-family tyrosine kinases are widely expressed in many cell types and participate in a variety of signal transduction pathways. Despite the significance of Src in suppression of apoptosis, its mechanism remains poorly understood. Here we show that Src acts as an effector for Ku70-dependent suppression of apoptosis. Inhibition of endogenous Src activity promotes UV-induced apoptosis, which is impaired by Ku70 knockdown. Src phosphorylates Ku70 at Tyr-530, being close to the possible acetylation sites involved in promotion of apoptosis. Src-mediated phosphorylation of Ku70 at Tyr-530 decreases acetylation of Ku70, whereas Src inhibition augments acetylation of Ku70. Importantly, knockdown-rescue experiments with stable Ku70 knockdown cells show that the nonphosphorylatable Y530F mutant of Ku70 reduces the ability of Ku70 to suppress apoptosis accompanied by augmentation of Ku70 acetylation. Our results reveal that Src plays a protective role against hyperactive apoptotic cell death by reducing apoptotic susceptibility through phosphorylation of Ku70 at Tyr-530.


Asunto(s)
Apoptosis , Autoantígeno Ku/metabolismo , Familia-src Quinasas/metabolismo , Sustitución de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Autoantígeno Ku/genética , Mutación Missense , Fosforilación/genética , Familia-src Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...